NERVOUS SYSTEM

NERVOUS SYSTEM

Central nervous system

Brain

Spinal cord

 Central nervous system: CNS which is composed of the Brain & Spinal cord.

• Peripheral nervous system: Which includes neurons located Outside the brain & spinal cord i.e any nerve that enter or leaves the CNS.

AUTONOMIC NERVOUS SYSTEM

- The <u>autonomic nervous system</u> is the part of the nervous system that supplies the internal organs, including the blood vessels, stomach, intestine, liver, kidneys, bladder, genitals, lungs, pupils, heart, and sweat, salivary, and digestive glands.
- The autonomic nervous system, along with the endocrine system coordinates the regulation & integration of bodily function.
- The autonomic nervous system has two main divisions:
- 1) Sympathetic system system

2) Parasympathetic

Sympathetic system: "Fight & flight"

Parasympathetic system: "Rest & Digest"

EFFECTORS OF THE ANS

- Neurons of the ANS innervate effectors that are Not under voluntary control.
- Think of effectors you Do not voluntarily control (involuntary).

Example of effectors innervated by the ANS are:

- Heart

- Smooth muscle of bronchial tubes & GI tract
- Smooth muscle lining blood vessels

CNS

First neuron = preganglionic neuron Ach= Acetylcholine= Cholinergic Second neuron= Postganglionic neuron NE=Norephindrine= Adrenergic neuron

SYMPATHATIC SYSTEM

- Anatomically, the sympathetic & parasympathetic neurons originate in the CNS & emerge from two different spinal cord regions.
- The preganglionic neurons of the sympathetic system come from thoracic & lumbar regions (T1-L2) of the spinal cord, & they synapse into two cord like chains of ganglia that run close to & parallel on each side of the spinal cord.
- Axons of the post ganglionic neuron extend from these ganglia to the tissues that they innervate & regulate.
- The sympathetic nervous system is also called thoracolumbar division because of its origin.
- In most cases, the preganglionic endings of sympathetic nervous system are highly branched enabling one preganglionic neuron to interact with many postganglionic neurons.
- This arrangement enables them to activate numerous effector organs.

PARASYMPATHETIC SYSTEM

- The parasympathetic preganglionic fibers arise from cranial nerve 3 (Oculomotor), 7 (Facial), 9(glossopharyngeal) & vagus as well as from the sacral regios(\$2 & \$4\$), of the spinal cord & synapse in ganglia near or on the effector organ.
- They are also called as craniosacral division.

TWO SYSTEMS IN OPPOSITION OF ONE ANOTHER

Parasympathetic system Slow heart rate

Sympathetic system increase heart rate

<u>Dual autonomic innervation</u>

~ One receptor subtype from each System tends to dominate in a tissue.

Example: Cardiac Myocytes= B-1, smooth Muscle of airways= B-2,

Smooth muscle lining in blood vessels= alpha-1

EXCITATION & INHIBITION

```
Oddly humbered= Usually Excitory

Beta-1 = oddly humbered= Excitory

Be

Activating beta-1

on cardiac Myocytes = heart rate

Activating alpha-1

on blood vessels = decrease blood vessels
```

(Vesoconstriction)

```
Evenly numbered= usually inhibitory

Beta-2 = evenly numbered= Inhibitory

Activating beta-2

In Airways= increase ventilation

(bronchodialation)
```


G- protein coupled receptors (GPCR)

- ~ All Adrenergic receptors (alpha & Beta)
- ~ All muscarinic receptors (M)
- ~ Excitatory or Inhibitory

Not G- Protein coupled receptors (Ligand- gated channel)

- ~ All Nicotinic receptors (N1 or N2)
- ~ Increase permeability of Na+ & Ca2+
- ~ Always excitatory

Please remember

- ~With Adrenergic & muscarinic receptors, evenly numbered subtypes tend to be inhibitory while oddly numbered tend to be Excitatory.
- ~Nicotinic receptors are always Excitatory.

SOMATIC NERVOUS SYSTEM

- The somatic nervous system (SNS or voluntary nervous system) is the part of the <u>peripheral nervous system</u> associated with the voluntary control of body movements via <u>skeletal muscles</u>.
- The somatic nervous system consists of <u>afferent nerves</u> or <u>sensory nerves</u>, and <u>efferent nerves</u> or <u>motor nerves</u>.
- Afferent nerves:- Afferent nerves are responsible for relaying sensation from the body to the <u>central nervous system</u>.
- **Efferent nerves:** efferent nerves are responsible for sending out commands from the CNS to the body, stimulating <u>muscle contraction</u>; they include all the non-sensory <u>neurons</u> connected with skeletal <u>muscles</u> and <u>skin</u>.

FUNCTION OF ANS:

- Largely co-ordinates visceral and reflexive actions
- Mostly not under conscious control (there are exceptions)
- Senses the internal environment of the body and acts accordingly
- Consists of both visceral sensory and motor neurons
- Also called "involuntary nervous system"
- Pretty complex
- Has a number of specializations that help co-ordinate a variety of responses with small set of fibers
- Important for homeostasis maintenance of constant internal environment of the body

Thanks for watching.....

ORGANISATION AND FUNCTION OF ANS

Hello guys.....

Welcome to key pharmacy......

I am going to discuss about remaining part of organisation And function of ANS.

Previous video part 1 dekhne k liye description or suggestion mai link given h .. Ap yaha se dekh skte h...

Aiye shuru krte hn, Aj ka topic...